Active

Improving our understanding of how to treat kidney cancer

Cancer types:

Kidney cancer

Project period:

Research institute:

University of Helsinki

Award amount:

£222,228

Location:

Finland

Researcher Dr Sakari Vanharanta

Dr Sakari Vanharanta and his team aim to understand exactly how a specific protein drives the development and progression of clear cell renal cell carcinoma in order to identify new ways to treat the disease.

Hope for the future

Clear cell renal cell carcinoma is the most common form of kidney cancer. In 2020, nearly 300,000 people worldwide were diagnosed with ccRCC and over 100,000 people died from the disease. Around half of patients will go on to develop metastatic disease, where the cancer has spread to other organs and is incurable, so the development of effective new treatments is vital.


Dr Vanharanta and his team are studying the molecular mechanisms that drive the growth and progression of ccRCC – the first step in identifying new ways to treat this lethal disease. The researchers hope that their discoveries will aid the future development of new therapeutic interventions that could prevent the development of metastatic disease in ccRCC.

Meet the scientist

Dr Sakari Vanharanta’s first encounter with science came in the form of a popular science book on evolution, which sparked an interest in genetics. Today, his experiments at the University of Helsinki try to understand the underlying mechanisms of cancer and why it spreads. Outside of the lab, Dr Vanharanta is a busy dad of two – if he has any spare time, he enjoys listening to music and playing the saxophone.

The science

Nearly all cases of clear cell renal cell carcinoma are caused by a mutation to a gene called VHL. Previous research has shown that cells with VHL genetic mutations produce an overactive protein called HIF2A, which is known to drive tumour growth and progression by switching on hundreds of genes. Drugs that inhibit HIF2A have shown promise for treating patients with ccRCC, but resistance to these drugs is common.


Not much is known about how HIF2A drives cancer growth or how resistance to drugs targeting this protein emerges. Dr Vanharanata’s research aims to understand exactly what happens at a molecular level when HIF2A is blocked long term in cancer. His team will also work out exactly how HIF2A switches on genes that drive cancer progression and identify new molecular mechanisms that will be the starting point for the development of new treatments that could bypass resistance to current drugs.

I would like to thank you from the bottom of my heart for making the work we do possible. Our collective fight against cancer is a team effort that needs contributions in different forms, and your support is essential.

Dr Sakari Vanharanta

Related projects

Complete Italy

Kidney cancer

How can we stop an inherited syndrome causing kidney cancer?

This project hopes to kickstart a new way to prevent kidney cancer developing by better understanding the process that puts some families at a higher risk.

Researcher: Dr Chiara Di Malta

Trying to stop the development of kidney cancer in Birt-Hogg-Dubé syndrome

Complete United Kingdom

Kidney cancer

Will a three-pronged attack help the most severe kidney cancers?

Researchers hope to improve a current treatment by finding new combination drugs that could work alongside it and help it work for as many patients as possible.

Researcher: Professor Hardev Pandha

Three-pronged attack on kidney cancer
Alfonso Calvo Team

Active Spain

Lung cancer

Can we stop cancers hiding from immunotherapy?

This project hopes to find a way for immunotherapies to work better, for more cancer patients. Using cutting-edge technologies they will test out a potential new way to treat cancer and explore how to advance it towards the clinic. 

Researcher: Dr Alfonso Calvo

Can we stop cancers hiding from immunotherapy?
Share this page